Im thermodynamischen Gleichgewicht gilt grundsätzlich das Kräftegleichgewicht aus Gibbs freier Enthalpie:
Das heißt, dass keine Energie- bzw. Potenzialdifferenz zwischen den jeweiligen Punkten im Raum vorliegt.
Ohne innere Barrieren (z. B. Wände) und wirkende Kraftfelder (z. B. Schwerkraft) gilt die triviale Lösung. Sie setzt für zwei beliebige Punkte 1 und 2 des Systems
• das thermische Gleichgewicht (s. u.) T1 = T2,
• das mechanische Gleichgewicht (s. o.) p1 = p2 und
• das Chemische Gleichgewicht μ1 = μ2
voraus. Ein System im thermodynamischen Gleichgewicht ist immer dann stationär, wenn die Flüsse Null werden, also keine treibenden Gradienten mehr die Potentialgrößen im System bewegen.
Ferner ist zu bemerken, dass reversible Prozesse nur entlang nahe beieinander liegender Punkte mit statischen Gleichgewichtsbedingungen möglich sind, da andernfalls die Entropie des Systems steigt.
Thermisches Gleichgewicht
Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (bspw. Einzelnachweisen) ausgestattet. Die fraglichen Angaben werden daher möglicherweise demnächst entfernt. Hilf bitte der Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Näheres ist eventuell auf der Diskussionsseite oder in der Versionsgeschichte angegeben. Bitte entferne zuletzt diese Warnmarkierung.
Der Begriff thermisches Gleichgewicht wird in zwei verschiedenen Zusammenhängen benutzt.
Zum einen im oben verwendeten Sinne als Zustand eines einzelnen thermodynamischen Systems: Es befindet sich im thermischen Gleichgewicht, wenn es durch einige wenige makroskopische Größen beschrieben werden kann und wenn sich diese Größen zeitlich nicht ändern. Eine Flasche Schnaps im Kühlschrank befindet sich im thermischen Gleichgewicht, weil ihr Zustand durch Masse, Temperatur, Druck und Alkoholgehalt eindeutig bestimmt ist und (oft) über längere Zeit konstant bleibt. Ein Liter kochendes Spaghettiwasser befindet sich nicht im thermischen Gleichgewicht, weil für die Beschreibung seiner turbulenten Strömungsbewegung sehr viele Informationen erforderlich sind und es deshalb im strengen Sinne kein thermodynamisches System ist.
Zum anderen als Beziehung zwischen mehreren Systemen: Zwei Körper, die miteinander in thermischem Kontakt stehen, befinden sich miteinander genau dann im thermischen Gleichgewicht, wenn sie die gleichen Temperaturen besitzen. Ist ein System A sowohl mit einem System B als auch mit einem System C im thermischen Gleichgewicht, dann sind auch die Systeme B und C miteinander im thermischen Gleichgewicht. Diese Aussage bildet eine wichtige Grundannahme der Thermodynamik und wird zuweilen als Nullter Hauptsatz der Thermodynamik bezeichnet.
Lokales thermisches Gleichgewicht
Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (bspw. Einzelnachweisen) ausgestattet. Die fraglichen Angaben werden daher möglicherweise demnächst entfernt. Hilf bitte der Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Näheres ist eventuell auf der Diskussionsseite oder in der Versionsgeschichte angegeben. Bitte entferne zuletzt diese Warnmarkierung.
Im thermischen Gleichgewicht stehen alle Prozesse im Gleichgewicht. Dies fordert u. a. auch, dass die Rate der Emission und Absorption von Strahlung im Gleichgewicht steht. Wenn das Strahlungsspektrum dem eines schwarzen Hohlraumstrahlers entspricht, gilt das thermische Gleichgewicht.
In vielen Fällen ist die Emissions- und Absorptionsrate jedoch selektiv; die Strahlung von Gasen und Flüssigkeiten sind über einen weiten Wellenlängenbereich optisch dünn, da nur bestimmte Energiezustände entsprechend der Quantenzahlen erlaubt sind. Gase oder Flüssigkeiten sind transparent für die Strahlung, deren Energie nicht zu einer Strahlungsanregung der Teilchen führen kann.
Mit dem lokalen thermodynamischen Gleichgewicht (engl. local thermodynamic equilibrium - Abkürzung LTE) wird das Verhältnis von angeregten zu nichtangeregten Molekülen beschrieben, das von der Temperatur und der Strahlungsintensität abhängt. Im isothermen Gleichgewicht von Strahlung und Molekülanregung wird dieses Verhältnis durch die Boltzmann-Statistik beschrieben. Wenn keine isothermen Bedingungen vorliegen, entstehen Abweichungen von der Boltzmann-Statistik. Sind diese Abweichungen gering, was hauptsächlich bei hoher Stoßhäufigkeit der Gasmoleküle der Fall ist, sind die Abweichungen zwischen der Boltzmann-Statistik und dem realem Verhältnis sehr gering, sodass man vom lokalen thermodynamischen Gleichgewicht spricht.
Dieser Fall des LTE liegt z. B. im größten Bereich der Erdatmosphäre vor. Erst in sehr großen Höhen, wo wegen des geringen Drucks die Stoßhäufigkeiten sehr gering sind, werden die Abweichungen von der Boltzmann-Statistik wesentlich und es liegt kein LTE mehr vor.
Quasistatische Prozesse
Wird ein thermodynamischer Prozess so ausgeführt, dass er ausschließlich als eine Abfolge von Gleichgewichtszuständen betrachtet werden kann, nennt man diesen Prozess quasistatisch oder quasistationär.
Quelle : http://de.wikipedia.org/
Zurück zur Physik
Keine Kommentare:
Kommentar veröffentlichen