Grenzen


Viele alltägliche Phänomene werden durch die klassische Mechanik ausreichend genau beschrieben. Es gibt aber Phänomene, die mit der klassischen Mechanik nicht mehr erklärt oder nicht mehr in Einklang gebracht werden können. In diesen Fällen wird die klassische Mechanik durch genauere Theorien ersetzt, wie z. B. durch die spezielle Relativitätstheorie oder die Quantenmechanik. Diese Theorien enthalten die klassische Mechanik als Grenzfall.


Das Verhältnis zur Relativitätstheorie


Anders als in der Relativitätstheorie gibt es in der klassischen Mechanik keine
Maximalgeschwindigkeit, mit der sich Signale ausbreiten können. So ist es in einem klassischen Universum möglich, alle Uhren mit einem unendlich schnellen Signal zu synchronisieren. Dadurch ist eine absolute, in jedem Inertialsystem gültige Zeit denkbar.

In der Relativitätstheorie ist die größte Signalgeschwindigkeit gleich der Vakuum-Lichtgeschwindigkeit. Unter der Annahme, dass zur Messung physikalischer Vorgänge benötigte Uhren perfekt synchronisiert werden können, lässt sich nun der Geltungsbereich der klassischen Mechanik gegenüber der Relativitätstheorie bestimmen. Die Annahme über die Synchronisierbarkeit gilt nämlich genau dann, wenn die zu messende Geschwindigkeit v im Vergleich zur (maximalen) Signalgeschwindigkeit c, mit der die Uhren synchronisiert werden, klein ist, d. h. .


Das Verhältnis zur Quantenmechanik


Im Gegensatz zu der Quantenmechanik lassen sich Massenpunkte mit identischen Observablen (Masse, Ort, Impuls) unterscheiden, während man in der Quantenmechanik von ununterscheidbaren Entitäten ausgeht. Das bedingt, dass klassische Körper in dem Sinne makroskopisch sein müssen, dass sie individuelle Eigenschaften besitzen, die sie unterscheidbar machen. Somit lassen sich z. B. Elementarteilchen einer Familie nicht als klassische Massenpunkte auffassen. Die Unterscheidbarkeit eines klassischen Teilchens rührt daher, dass es, wenn es sich selbst überlassen wird, in seinem vorherigen Inertialsystem verharrt. Dies ist für ein quantenmechanisch beschriebenes Teilchen nicht der Fall, da ein sich selbst überlassenes Teilchen nicht zwangsweise in seinem Inertialsystem verharrt. Diese Tatsache kann man in der Quantenmechanik herleiten, in dem man das Schrödinger-Anfangswertproblem für die Wellenfunktion eines Teilchens löst, dessen Aufenthaltswahrscheinlichkeit zu einem Zeitpunkt t = 0 genau an einem Ort lokalisiert ist (ein so genannter δ-Peak). Die Aufenthaltswahrscheinlichkeit beginnt mit zunehmender Zeit zu zerlaufen. Der physikalische Grund dafür ist, dass die (exakte) Messung des Ortes eines mikroskopischen Teilchens ein Eingreifen in das physikalische System bedeutet.


Wikipedia
Zurück zur Physik

Keine Kommentare:

Kommentar veröffentlichen

Physik - Master in Deutschland